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Abstract 

Background:  In many studies, it is of interest to identify population subgroups that are relatively homogeneous 
with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest 
targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical 
methods.

Main text:  We review the literature on decision trees, a family of techniques for partitioning the population, on the 
basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision 
tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference 
tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, 
a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population 
subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are 
truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical 
hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting 
the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel 
graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by deci-
sion trees.

Conclusions:  Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of 
individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer 
CTree technique due to its simplicity and ease of interpretation.
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Background
The framing of medical research hypotheses and devel-
opment of public health interventions often involve the 
identification of high-risk groups and the effects of indi-
vidual factors on the relevant outcome [1, 2]. For exam-
ple, the prevalence of obesity in the United States has 
more than doubled in the past 30  years [3, 4] and this 
trend can be associated with a complex combination 
of factors in the data. However, excessive calorie con-
sumption and inadequate physical activity are not solely 

responsible for this problem; numerous other factors 
such as socio-economic differences, demographic char-
acteristics, physical environment, genetics, eating behav-
iors, etc. also influence the energy intake balance and 
weight status.

While individual effects can be measured efficiently, 
characterizing these factors in relation to an outcome of 
interest can be challenging. Effects of continuous vari-
ables (e.g., age) may be non-linear, and vary with other 
continuous (e.g., years of education) and categorical 
(e.g., sex) variables. Regression models have long been 
utilized for prediction and to examine the relationships 
between covariates and responses of interest. However, 
their ability to identify interactions between covariates 
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and relevant population subgroups is restricted by the 
data analyst’s decision about how covariates are defined 
and included in the model. For example, even in the very 
simple case of partitioning the population into two maxi-
mally distinct groups on the basis of a single continu-
ous predictor X, one would need to fit separate models 
with categorical predictors indicating that X exceeded 
a particular threshold value, for many different thresh-
old values. Since many candidate models may have to 
be investigated in this somewhat ad hoc manner, Type I 
error may be inflated.

The main goal of this paper is to introduce and 
describe the family of statistical methods known as 
decision trees, a family which is particularly well-
suited to exploring potentially non-linear relation-
ships between variables and identifying population 
subgroups who are homogeneous with respect to out-
comes. Decision trees have been utilized to identify 
joint effects of air pollutants [5], generate a realistic 
research hypothesis for tuberculosis diagnosis [6], and 
recognize high-risk subgroups to aid tobacco control 
[7]. After providing a brief overview of decision trees, 
we introduce a novel data visualization technique for 
summarizing the subgroups identified by the trees. 
Next, we explore the differences between a commonly 
used technique for building decision trees, CART, and 
the conditional inference tree (CTree) approach which 
has not been widely used in epidemiological applica-
tions. Based on simulation results and analyses of real 
data, we discuss the relative strengths and weaknesses 
of these two approaches and the resulting implications 
for data analysis.

Application: the Box Lunch Study
Throughout this paper, we present examples and analy-
ses based on variables collected in the Box Lunch Study 
(BLS), a randomized controlled trial designed to evaluate 
the effect of portion size availability on caloric intake and 
weight gain in a free living sample of working adults. The 
main randomized comparisons of the BLS (along with 
details of ethics approval and consent information) have 
been reported elsewhere [8, 9]. However, the data also 
provides the opportunity to explore associations between 
outcomes and individual characteristics. Available covar-
iates include demographic (e.g. age, gender, race, height, 
education), lifestyle (e.g. smoking status, physical activ-
ity levels), and psycho-social measures (e.g. frequency of 
self-weighing, degree of satisfaction with current weight). 
Responses to the Three Factor Eating Questionnaire 
(TFEQ) [10] quantifying the constructs of hunger, disin-
hibtion, and restraint were also recorded. The BLS also 
collected data on some novel, laboratory-based psycho-
social measures that had not previously been measured 

in a randomized trial setting such as the relative rein-
forcement of food (rrvf ), liking and wanting.

Software availability
The analyses, simulations, and visualizations presented 
in this paper were all produced using the freely-availa-
ble statistical software R [11–14]. External packages and 
functions used are referenced in the text. Code for our 
novel visualization is available at  https://github.com/
AshwiniKV/visTree and for reproducing our example 
trees and our simulation study at https://github.com/
AshwiniKV/obesity_decision_trees.

Methods
A brief introduction to decision trees
A decision tree is a statistical model for predicting an 
outcome on the basis of covariates. The model implies a 
prediction rule defining disjoint subsets of the data, i.e., 
population subgroups that are defined hierarchically via a 
sequence of binary partitions of the data. The set of hier-
archical binary partitions can be represented as a tree, 
hence the name. The predicted outcome in each subset is 
determined by averaging the outcomes of the individuals 
in the subset. The goal is to create a prediction rule (i.e., 
a tree) which minimizes a loss function that measures the 
discrepancy between the predicted and true values.

Decision trees have several components, as illustrated 
in Fig. 1 which summarizes the association between the 
outcome of daily caloric intake and hunger, dis-inhibi-
tion, restrained eating, relative reinforcement, liking, and 
wanting. Nodes contain subsets of the observations; the 
root node of a tree (labeled with a ‘1’ in Fig. 1) contains 
all observations (n = 226 in the Box Lunch Study). The 
key step in algorithms for constructing decision trees is 
the splitting step, where the decision is made on how to 
partition the sample (or sub-sample, for nodes below the 
root) into two disjoint subsets according to covariate val-
ues. The splits below a node are represented as branches 
in the tree. Splitting continues recursively down each 
branch until a stopping rule is triggered. A node where 
the stopping rule is satisfied is referred to as a leaf or a 
terminal node. Taken together, the terminal nodes define 
a disjoint partition of the original sample; each observa-
tion belongs to exactly one terminal node, depending on 
its covariates. A prediction for a new observation’s out-
come is made by determining (based on that observa-
tion’s covariates) which leaf it belongs to, then combining 
the outcomes of the existing observations within that leaf 
to get a predicted value.

In Fig.  1, both the outcome and predictors are stand-
ardized column-wise to have mean zero and variance 
equal to one. Standardization puts all the predictors on 
the same scale, which may be helpful when, as here, some 
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of the predictors (e.g., rrvf, liking, and wanting) are meas-
ures that do not have universally agreed-upon units or 
methods of measurement1. For example, in Fig.  1, the 
root node with a label ‘1’ as node ID partitions the popu-
lation into two groups: (1) subjects whose hunger meas-
urement is less than or equal to 1.69 standard deviations 
above the mean hunger, and (2) subjects whose hunger is 
greater than 1.69 standard deviations above the mean. 
Standardizing the outcome allows for a similar interpre-
tation of the leaf nodes: the leaf with node ID = 6 has a 
value of 0.26, indicating that the mean 24-h energy intake 
for the subjects contained in this node (i.e., those with 
hunger ≤1.69, liking >− 0.28, and rrvf >− 1.26) is 0.26 
standard deviations above the overall mean of 24-h 
energy intake. A mean of 0.26 standard deviations of 24-h 
energy intake corresponds to a value of 2190 
kilo-calories2.

1  Some studies record participant’s self-reported level of wanting and lik-
ing using quantitative scales (e.g., [15]), while other studies measure this via 
brain activity during a motivational state (e.g., [16, 17]).
2  This standardized value of 0.26 is calculated from (2190− 2012)/685.55, 
where 2012 is the mean energy intake and 685.55 is its standard deviation.

Adjusting for covariates
Often, factors such as age, sex, and education level may 
influence the outcome of interest and be associated with 
other predictors (i.e., they are confounders), but their 
effects are not of primary interest. In linear regression, it 
is common practice to adjust for such variables by includ-
ing them in the regression model.

In decision trees, an analogue to covariate adjustment 
involves building the tree using adjusted residuals, i.e., 
residuals from a regression model containing the con-
founders. To be precise, suppose that one wished to 
assess the effects of the predictors described in the previ-
ous sections, adjusting for age, sex, and BMI. Letting Y 
denote 24-h energy intake, one would first fit the model

Given coefficient estimates β̂0, β̂1, β̂2, and β̂3, the age-, 
sex, and BMI-adjusted residuals for 24-h energy intake, 
Y ∗, are

The residuals Y ∗ can then be used as the outcome in a 
regression tree including the predictors of interest. This 

(1)Y = β0 + β1 Age+ β2 Sex+ β3 BMI+ ǫ

(2)Y ∗ = Y − β̂0 − β̂1 Age− β̂2 Sex− β̂3 BMI

Fig. 1  Decision tree showing the association between daily caloric intake (in kcal/day) and hunger, dis-inhibition, restrained eating, relative rein-
forcement, liking, and wanting. All measures are obtained at baseline in the Box Lunch Study
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adjusted residuals technique can be easily applied using 
standard software.

Visualizing subgroups in decision trees
One of the most attractive features of decision trees is 
that they partition a population sample into subgroups 
with distinct means. However, the typical display of a 
decision tree (e.g., Figs.  1 and 2) does not always allow 
researchers to easily characterize these subgroups. 

The problem is particularly acute if some of the predic-
tor variables do not have an interpretable scale built 
on established norms: the relative reinforcing value of 
food and degree of liking/wanting measured in the Box 
Lunch Study are novel and have not yet been widely 
used, so a standard unit of measurement has not yet been 
established.

To address this limitation, we developed a software 
tool for visualizing the composition of subgroups defined 
by decision trees. The visualization consists of a grid of 
plots, one corresponding to each terminal node (i.e., 
population subgroup). In Fig.  3, each plot in this grid 
of plots corresponds to one of the four terminal nodes 
(population subgroups) in Fig. 1, i.e. nodes 3, 5, 6, and 7. 
In the background of each plot is a histogram summariz-
ing the distribution of the outcome variable (here, 24-h 
energy intake) for the individuals in the terminal node/
subgroup. For example, the top left plot in Fig. 3 shows a 
distribution of (standardized) 24-h energy intake that is 
right-skewed. The numbers along the x-axis are the aver-
age 24-h energy intake within each individual bin of the 
histogram. The mean of the values contained in the bins 
of the histogram are presented for each individual bin. 
The vertical line shows the overall mean of the subgroup; 
the mean and subgroup size are shown in the plot title. 
Overlaid on the background are colored bars; the length 
and position of the bars represent the set of predictor val-
ues, on the percentile scale, which define the subgroup. 

Fig. 2  Regression tree showing the association between Energy kcal/
day and hunger, dis-inhibition, restrained eating, relative reinforce-
ment of food, liking, and wanting

Fig. 3  Graphical visualization of the conditional inference tree in Fig. 1, where the visualization consists of a grid of plots and each plot corresponds 
to a terminal node
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The subgroup corresponding to the top left plot of Fig. 3 
is defined by liking values below −0.28, which represents 
the 39th population percentile and hunger values that are 
below 1.69, which represents the 91st percentile.

This visualization summarizes, at a glance, the charac-
teristics of the groups determined by the regression tree. 
For instance, in Fig. 3, the four groups could be charac-
terized as:

Group 1 (N = 86): Moderate to low liking, all but very 
high hunger. This group has below-average energy 
intake (standardized mean = −0.46).
Group 2  (N = 22): Moderate to high liking, very low 
relative reinforcing value of food, all but very high 
hunger. This group has moderate to low energy intake.
Group 3  (N = 104): Moderate to high liking, all but 
very low relative reinforcing value of food, all but very 
high hunger. This group has moderate to high energy 
intake.
Group 4  (N = 14): Very high hunger. This group has 
very high energy intake.

The prediction rules defining these subgroups provide 
insight into the individual characteristics that can affect 
the outcome, and can be used to define categorical vari-
ables that could yield more meaningful and interpretable 
comparisons in future analyses.

Methods for building decision trees
Classification and regression trees (CART)
The most popular method for constructing decision 
trees, known as CART (Classification and Regression 
Trees) was introduced by Breiman [18]. In a CART (e.g., 
Fig. 2), a split is sought to minimize the relative sum of 
squared errors in the two partitions resulting from the 
split. The search for splits in CART takes place across 
two dimensions simultaneously: the covariate to split on 
and splitting point within that covariate. In other words, 
the splitting step in CART is greedy: the best split is 
sought across all covariates and candidate split points for 
those covariates. For binary and categorical covariates, all 
possible values are considered as possible split points; for 
continuous covariates, an equally-spaced grid covering 
the range of possible values is usually considered.

Because it searches over all possible splits on all covari-
ates, CART is vulnerable to the so-called biased variable 
selection problem; there are more potential “good” splits 
on a continuous-valued covariate (or one with a large 
number of distinct values) than on a binary covariate. 
This tendency of CART to favor variables with many pos-
sible splits has been described in [18–20] and [21].

Furthermore, the nature of the splitting process makes 
it difficult to describe the statistical properties of any 

particular split. For instance, CART is not concerned 
with the notion of Type I error since it does not control 
the rate at which a regression tree identifies population 
subgroups when there is truly no heterogeneity in the 
mean of the outcome.

Conditional inference trees (CTree)
As an alternative to CART, Hothorn et al. [22] proposed 
the conditional inference tree (CTree). Unlike CART, 
CTree (e.g., Fig.  1) separates the splitting process into 
two distinct steps. The first step is to determine the varia-
ble to split on based on a measure of association between 
each covariate and the outcome of interest. Then, after 
the splitting variable has been determined, the best split 
point for that variable is calculated.

In contrast to CART, CTree follows formal statistical 
inference procedures in each splitting step. The associa-
tion between each covariate and the outcome is quanti-
fied using the coefficient in a regression model (linear 
regression for continuous outcomes and other suitable 
regression models for other outcome types), and a node 
is only chosen to be split if there is sufficient evidence to 
reject the global null hypothesis, i.e., the hypothesis that 
none of the covariates has a univariate association with 
the outcome. If the global null hypothesis is rejected, 
then the covariate that displays the strongest association 
with the outcome of interest is selected as a candidate for 
splitting. If the minimum p-value is larger than the multi-
plicity adjusted significance threshold, then no variable is 
selected for splitting and the node is declared a terminal 
node. Note that, despite its name, CTree bases splitting 
decisions on marginal (i.e., univariate) regression mod-
els; the “conditional” refers to the fact that, following the 
initial split, subsequent inference takes place within sub-
groups, i.e., conditional on subgroup membership.

Stopping rules
In both CART and CTree, splitting continues until a stop-
ping rule triggers. In CART, splitting stops when the rela-
tive reduction in error resulting from the best split falls 
below a pre-specified threshold known as the complex-
ity parameter. Typical values of this parameter are in the 
range of 0.001–0.05. To prevent overfitting, it is common 
practice to construct trees for a sequence of values of this 
parameter, and select the final value by minimizing pre-
diction error estimated by cross-validation or on an inde-
pendent test set. This process is referred to as pruning 
[23, 24]. A slightly more conservative stopping rule sets 
the final complexity parameter to the value which yields 
a prediction error one standard deviation larger than the 
minimum estimated by cross-validation or on an inde-
pendent test set. This is known as the 1-SE rule. As noted 
above, CTree’s stopping rule is simple: splitting stops if 
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the global null hypothesis is not rejected at the pre-deter-
mined, multiplicity adjusted level of significance.

Comparing CART and CTree: a simulation study
In this section, we describe simulated and real data and 
develop scenarios within a simulation study to highlight 
distinctions between CART and CTree. We also compare 
their predictive performance to standard regression mod-
els in a variety of settings and perform simulations utiliz-
ing the R statistical software package, version 3.3.0  [11]. 
The results of this study are presented in “Results” section. 
The CART algorithm was implemented using the rpart 
package  [13], while the CTree was implemented via the 
partykit package  [12]. We considered a variety of 
scenarios where we varied the data-generating function, 
covariate type (categorical vs. continuous), the sparsity 
(proportion of variables predicting the outcome), the total 
sample size, and the complexity parameter for CART.

For all scenarios other than the one where sample size 
was varied, the sample size was fixed at 250 and in all sce-
narios trees were constructed using six covariates. Continu-
ous outcomes were generated as independent N (η, 1) with 
linear predictor η varying across scenarios as described 
below. Continuous covariates were generated from inde-
pendent Normal distributions with mean zero and unit 
variance; binary covariates were generated as independ-
ent Bernoulli(p = 0.5). Pruning for CART was carried out 
using both the minimum and the 1-SE rule, with the 1-SE 
rule being implemented using the DMwR package [14]. The 
tree-generating functions rpart (for CART) and ctree 
(for CTrees) were applied with arguments specifying a 
minimum of 20 observations for a node to be considered 
for splitting and a minimum of 7 observations in a terminal 
node. The complexity parameter for CART was held at the 
default value of 0.01. The level of significance in the CTree 
was held at the default value of α = 0.05.

For each scenario, 10,000 simulations were performed, 
where in each simulation a training dataset was simulated 
and used to construct the trees, and tree performance 
was evaluated on an independently generated test data-
set. Prediction error and tree complexity were summa-
rized respectively via the mean squared error (MSE) and 
the number of terminal nodes (equal to the total number 
of splits in the tree, plus one).

Effect of the data generating process
Decision trees perform well in  situations where the 
underlying population is partitioned into a relatively 
small number of subgroups with distinct means. How-
ever, they are less suited to scenarios in which the out-
come varies continuously with covariate values.

We started by generating independent normally distrib-
uted outcomes according to a pre-specified tree structure, 

i.e., set of splits to seven terminal nodes with mean values 
(−1.88, −0.30, −0.31, 0.25, −0.09, 2.23, 1.35), and unit 
variance. The candidate covariates for this tree included 
six continuous covariates (X1, . . . ,X6), mimicking the six 
covariates considered in the introductory examples above. 
This CTree is grown to consist of seven terminal nodes 
with splits at hunger, liking, rrvf, and disinhibition.

In a different scenario, continuous responses are gen-
erated from N (η, 1) where η follows a regression model 
defined as

and X1 . . .X6 are simulated as independent normally 
distributed continuous covariates. We also generated a 
hybrid model from normally distributed data with unit 
variance according to N (η, 1) with

where X1,X2, and X3 are simulated as independent nor-
mally distributed continuous covariates and are utilized 
to form distinct subgroups represented by three differ-
ent indicator functions, indicated by 1. This hybrid model 
includes main effects of three continuous covariates 
along with interaction terms and subgroup indicators 
constructed from these covariates.

Type I error
We also evaluated the Type I error rate of the different 
tree-building algorithms. For a tree, we say that a Type I 
error occurs if a tree splits on a variable that has no asso-
ciation with the outcome. To evaluate Type I error, we 
generated six independent and normally distributed con-
tinuous covariates and a response with mean zero and 
unit variance, unrelated to the covariates.

Effect of sample size
Figure  4 summarize the predictive performance of 
tree types as sample size changes. For each sample size 
n = 30, 250, 500, 1000, 3000, and 5000 we generated six 
covariates and continuous responses were generated 
from a N(η, 1) with η following a linear regression model:

Results
Comparing CART and CTree: a simulation study
Effect of the data generating process
The set of Tree results for the model that generates data 
from a tree structure in the first five rows of Table 1 sum-
marizes the estimated prediction error (MSE) and tree 
complexity (mean, 20th, and 80th percentile number of 
terminal nodes) of CTree on the generated data with a 

η = 1.5X1 + 1.25X2 + 1X3 + 0.85X4 + 0.75X5 + 0X6

η = 0.5X1 + 0.45X2 + 0.3X3 + 1.51(X1 ≤ 0,X2 > 0,X3 ≤ 0)

+ 0.251(X1 ≤ 0,X3 > 0)+ 0.141(X1 > 0,X2 > 0),

η = 1.5X1 + 1.25X2 + 1X3 + 0.85X4 + 0.75X5 + 0X6.
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comparison to three other tree algorithms: the unpruned 
CART, CART with two types of pruning, and with the 
results from a linear regression model. As expected, all 
the tree-based techniques have lower MSE than linear 
regression. In this case, CTree produces trees with a sim-
ilar number of terminal nodes to the CART pruned with 
the 1-SE rule but lower number of nodes when compared 
to the regular pruned CART. The CTree and both types 
of pruned CARTs have results for decision trees with 3–4 
terminal nodes, in contrast to the generated tree struc-
ture with seven terminal nodes. This is likely due to the 
fact that our simulated tree data contained several nodes 
with very similar means.

The second set of results in Table 1 (Regression) sum-
marize performance for all four model types. The (cor-
rectly specified) linear regression model has far better 
predictive performance than the tree models. Interest-
ingly, CTree has better predictive accuracy than the 
pruned versions of CART, a result which agrees with the 
findings of Schaffer [25] that pruning does not necessar-
ily improve predictive accuracy, particularly when there 
are many (here, infinitely many) subgroups.

For the hybrid scenario when data is generated from 
the defined hybrid model, we compare the performance 
of the trees to a partially misspecified linear regression 
model containing only the main effect terms for the con-
tinuous covariates and the results in Table  1 show that 
predictive accuracies are relatively similar.

Type I error
The results are presented in Table 2. We found that the 
unpruned CART algorithm continues to split and grow 
unlike the pruned CARTs and CTree. CARTs pruned 
using a 1-SE rule are rather conservative with a very low 
Type I error while the pruned CART and CTree have 
Type I errors that are closer to 0.05. As noted below, 
explicit control of the Type I error rate is an advantage of 
the CTree approach.

Effect of sample size
We observe in Fig. 4 that as sample size increases, the 
MSE of CTree continues to improve while that of the 
CART variants levels off beyond n = 500. The rea-
son for this behavior is that CART’s stopping rules are 
based on a complexity parameter, which sets a lower 
bound for improvement in model fit which is insensi-
tive to sample size. In the rpart package, the default 
complexity parameter value is 0.01, so splitting stops if 
no split improves model fit by at least 1%. In this set-
ting, the covariates have continuous linear effects, 
which implies an infinite number of population sub-
groups. Hence, most splits will yield small improve-
ments in model fit, and CART variants will “stop too 
soon” and have poor predictive performance. In con-
trast, the stopping criterion for the CTree is based on 
p values, and maintaining a fixed p value threshold with 
increasing sample size allows splits associated with 
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smaller and smaller effect sizes to be represented in the 
tree.

Application
We illustrate the application of decision trees to the Box 
Lunch Study by comparing a linear regression model and 
decision tree that seek to predict 24-h energy intake (in 
kcal/day) using a set of 25 covariates measured at base-
line. These prediction models were built on the covari-
ates introduced in “Application: the Box Lunch Study” 
section such as restrained eating, rrvf, liking as well as 
other covariates that record demographic characteristics 
including age, sex, and BMI. Other covariates included 
were psycho-social measures such as “Influence of weight 
on ability to judge personal self”, “Ability to limit food 
intake to control weight (days/month)”, and “Frequency 
of weighing oneself”.

To provide a baseline for comparison, we present 
results from a linear regression model in Table  3. The 

covariates listed are those selected using backward elimi-
nation with the AIC. While there are many significant 
covariates in Table 3, this linear regression does not pro-
vide any information about potential interactions nor 
does it identify particular population subgroups that 
share similar values of the outcome.

Figure  5 shows a conditional inference tree to predict 
total energy intake, adjusted for age, sex, and BMI, from 
22 baseline covariates. The corresponding CART regres-
sion tree is provided in Additional file 1. The overall 
structure and splitting of the CART and CTree are simi-
lar, though CART has more splits than CTree. The pre-
diction mean-squared error (using scaled energy intake 
values) for the conditional inference tree in Fig. 5 is 0.67 
compared to 0.48 for the linear regression in Table  3. 
While the mean squared error is lower for linear regres-
sion, it may provide only limited scientific insight into 
the complex mechanisms underlying energy intake. Only 
the decision tree enables the identification of meaning-
ful population subgroups and allows for formal inference 
about the defined groupings. For example, at the top level 
of the tree, the variable most strongly associated with 
(adjusted) total energy intake is snack calories (skcal, 
p < 0.001). Splitting the population according to snack 
calories ≤798.22 versus >798.22 produces two subgroups. 
Within the first group (following the left branch in Fig. 5), 
snack calories remain the most significant predictor of 
total energy intake (p < 0.001), while in the second group 
(the right branch of Fig. 5) none of the covariates are sig-
nificantly associated with the outcome. The first group 
(skcal ≤798.22) again splits into two groups: snacking 

Table 2  Aggregated results of  simulations that  evaluate 
Type I error of different tree building algorithms

Type MSE Type I error

Mean SD Mean

CART 0.65 0.07 1

Pruned CART 0.99 0.091 0.0559

Pruned CART (1-SE) 1 0.089 0.0003

CTree 0.99 0.089 0.0513

Linear regression 0.97 0.088

Table 1  Aggregated simulation results that describe the effect of multiple types of data generating processes

These sources of data include a tree structure, a regression model and a hybrid model that combines the two structures

True model Type MSE Terminal nodes

Mean SD Mean 20th 80th

Tree CART 1.26 0.151 7.01 6 8

Pruned CART 1.22 0.137 4.27 3 5

Pruned CART (1-SE) 1.25 0.139 3.31 3 4

CTree 1.27 0.154 3.72 3 4

Linear regression 2.04 0.179

Regression CART 4.12 0.413 15.24 14 16

Pruned CART 4.19 0.442 13.97 12 16

Pruned CART (1-SE) 4.55 0.509 8.66 6 11

CTree 4.14 0.409 13.96 13 15

Linear regression 1.03 0.093

Hybrid CART 1.39 0.138 13.1 11 15

Pruned CART 1.37 0.131 5.96 3 9

Pruned CART (1-SE) 1.39 0.133 2.69 2 3

CTree 1.34 0.126 5.42 4 6

Linear regression 1.17 0.106
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Table 3  Linear regression output for modeling 24-h energy intake using a “suitable” set of predictors

This “suitable” set of predictors is chosen using a backward elimination process, such that the AIC for the relevant model is minimized

Estimate SE t value Pr(>|t|)

(Intercept) 1279.36 211.78 6.04 <0.001***

Sex: male 378.03 66.30 5.70 <0.001***

Body mass index 16.68 6.96 2.40 0.017*

Snack-energy kcal/day 1.29 0.12 10.76 <0.001***

Fruit/vegetable svg/day 38.84 14.94 2.60 0.010**

Sugar-sweetened beverage svg/day 114.20 30.3234 3.77 <0.001***

Contour drawing rating scale-body dissatisfaction [1–9] −48.44 26.2195 −1.85 0.066

Frequency of self-weigh

 Never (Ref )

 About once a year or less −405.34 145.47 −2.79 0.006**

 Every couple of months −247.32 137.55 −1.80 0.074

 Every month −374.43 147.96 −2.53 0.012*

 Every week −414.77 138.67 −2.99 0.003**

 Every day −450.17 166.89 −2.70 0.008**

Fast food frequency

 Never (Ref )

 1–3 times last month 14.13 77.01 0.18 0.855

 1–2 times per week 35.63 95.42 0.37 0.709

 3–4 times per week −187.55 204.63 −0.92 0.360

 5–6 times per week −235.81 237.61 −0.99 0.322

 7 or more times per week 738.04 238.35 3.10 0.002**

Hunger 32.52 10.15 3.20 0.002**

Wanting 2.88 0.85 3.40 <0.001***

skcal
p < 0.001

1

≤ 798.22 > 798.22

skcal
p < 0.001

2

≤ 339.79 > 339.79
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Fig. 5  Conditional inference tree representing the relationship between adjusted residuals for daily energy intake (adjusted for age, sex, and BMI) 
and 22 baseline covariates. Added Node ID labels in the terminal node. This is consistent with the titles for each subplot in Fig. 3 and the CTree in 
Fig. 1
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calories ≤339.79 and >339.79 (but ≤798.22). In the for-
mer, “low snacking” group, the covariate most strongly 
associated with total energy intake is servings of sugar-
sweetened beverages (srvgssb, p = 0.01 ), which defines 
subgroups according to whether individuals consumed ≤ 
or >0.53 SSBs per day. In the latter, the strongest asso-
ciation is with hunger (p = 0.01), which splits into sub-
groups according to hunger ≤7 or >7. The lower hunger 
group splits one more time on snack calories. Within the 
former “low snacking” group that splits to define a sub-
group that consumes ≤0.53 SSBs per day, the covariate 
most strongly associated with energy intake is servings of 
fruits and vegetables (srvgfv0, p = 0.044), which defines 
subgroups according to whether individuals consumed ≤ 
or >2.04 servings per day.

In general, decision trees are typically used to describe 
the associations between a set of covariates and an out-
come, and thereby identify population subgroups with 
different outcome values. In our setup, there is no one par-
ticular exposure or treatment variable of interest, so there 
is not one focal variable whose effect may be modified by 
others. However, recursive partitioning does identify rel-
evant interactions between covariates, i.e., combinations 
of covariate values which result in different (mean) values 
of the outcome. Hence, if the term “effect modification” 
is identified with “interaction”, then decision trees can be 
viewed as a tool for exploring effect modification.

Figure 6 is composed of 7 sub-plots that represent each 
of the terminal nodes (i.e., subgroups) in Fig. 5. The top 

left sub-plot in Fig. 6 corresponds to node #5 (n = 23) in 
Fig. 5. The mean of adjusted residuals is −702.94, indicat-
ing that on average, individuals in this node have a daily 
energy intake 702.94 kcal lower than the age-, sex-, and 
BMI-adjusted population mean. In the top left sub-plot 
in Fig. 6, colored horizontal bars describe the population 
subgroup of node #5: individuals with low to moderate 
servings per day of sugar-sweetened beverages (≤0.53 
servings per day, i.e., below the 60th population percen-
tile), low servings per day of fruits and vegetables (≤2.04 
servings per day, i.e., below the 25th population percen-
tile) and low to moderate snack calories (≤339.79 kcal per 
day, below the 50th population percentile).

The bottom row of plots corresponds to the three nodes 
which had the highest adjusted average caloric intake 
(+455.47, +486.66, and +1210.44  kcal/day relative to 
the adjusted population mean, respectively). These nodes 
defined three distinct subgroups: (1) low to moderate 
hunger (≤7, below the 80th percentile) and relatively high 
snacking (627–798 kcal/day, between the 89th and 92nd 
percentiles); (2) high hunger (>7, above the 80th percen-
tile) and moderate snacking (340–798 kcal/day, between 
the 58th and 92nd percentiles); and (3) very high snack-
ing calories (≥ 798 kcal/day, above the 92nd percentile). 
The fact that the first two of these groups have relatively 
similar adjusted mean daily caloric intake while being 
defined by distinct combinations of hunger and snacking 
levels (low hunger, moderate to high snacking in the first 
group vs. high hunger, moderate snacking in the second) 

Fig. 6  Graphical visualization to display the composition of the 7 subgroups defined by the tree in Fig. 5
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suggests that there are multiple pathways which lead to 
similar levels of consumption of excess calories. These 
distinct pathways may require different intervention 
strategies: for example, the low hunger but moderate to 
high snacking group might be effectively targeted by an 
approach which sought to reduce snacking opportunities, 
under the logic that due to their relatively low hunger 
level they are more likely to be snacking out of conveni-
ence than to satisfy a craving. The high hunger but more 
moderate snacking group, on the other hand, might be 
more responsive to an approach aimed at managing crav-
ings. Yet another approach might be required to opti-
mize outcomes for the third group whose extremely high 
adjusted daily caloric intake (+1210.44 kcal/day relative 
to the population) was associated with extremely high 
snacking but not hunger.

Conclusions
Decision trees can be a powerful tool in a researcher’s 
data analysis toolbox, providing a way to identify relevant 
population subgroups which may provide insight into 
associations and effect mechanisms, and suggest strat-
egies for tailoring interventions. In this paper, we com-
pared two techniques for constructing decision trees, 
CART and CTree, and introduced a novel graphical 
visualization technique for decision trees which allows 
a researcher to see and compare the characteristics of 
these subgroups. Our focus was on describing relation-
ships between a relatively small number of continuous 
or binary covariates and continuous outcomes in stud-
ies with moderate sample sizes, but decision trees can 
easily be extended to problems with larger sample sizes 
[26, 27], greater number of covariates, and for modeling 
other covariate and outcome types [28, 29]. The CTree 
approach in particular accommodates a wide variety of 
data types, including categorical and time-to-event out-
comes, within the same statistical framework.

While the data we used to illustrate the application of 
decision trees arose from a randomized controlled trial, 
we performed cross-sectional analyses on baseline data 
and hence did not use information on treatment assign-
ment. As with any technique based on identifying statis-
tical associations, decision tree methods do not estimate 
causal effects of individual characteristics or exposures 
in such cross-section analyses. The adjustment proce-
dure we describe above allows the researcher to account 
for measured variables that are thought to be confound-
ers, but the additional flexibility provided by decision 
tree models cannot correct for bias due to unmeasured 
confounding. Hence, conclusions based on decision tree 
analysis should be viewed as exploratory. In ongoing 
work, we are extending the decision tree framework to 
characterize (causal) treatment effect heterogeneity (i.e., 

causal effect modification) in the context of randomized 
intervention studies.

The two decision tree fitting techniques we compared 
in this paper, CART and CTree have different strengths 
and weaknesses. CART has the advantage of availability: 
it is widely implemented in standard statistical software 
packages, while to our knowledge, conditional inference 
trees are currently only implemented in R. In our experi-
ments, CART often had slightly higher predictive accu-
racy than CTree due to its additional flexibility. However, 
CTree offers several advantages over CART. First, CTree 
yields a simpler tree building process as compared to 
CART, since in CTree a single overall Type I error rate 
parameter (α) controls the size of the tree and removes 
the need for pruning. The α value can be set independ-
ent of the outcome type (e.g., continuous, binary, time 
to event, etc.), unlike for CART where the complexity 
parameter depends on the splitting criterion which may 
differ depending on the outcome type. By using formal 
inferential techniques incorporating multiplicity adjust-
ments to select splits, CTree provides statistical guaran-
tees and valid p values at each split. Hence, the researcher 
deciding which technique to use must consider the rela-
tive value of giving up a small amount of model flexibility 
and predictive accuracy to simplify modeling and gain 
the ability to make formal statistical statements based on 
the results from the fitted tree.
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